Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.017
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612788

RESUMO

Proteasome inhibitors are used in the therapy of several cancers, and clinical trials are underway for their use in the treatment of glioblastoma (GBM). However, GBM becomes resistant to chemotherapy relatively rapidly. Recently, the overexpression of ribonucleotide reductase (RNR) genes was found to mediate therapy resistance in GBM. The use of combinations of chemotherapeutic agents is considered a promising direction in cancer therapy. The present work aimed to evaluate the efficacy of the combination of proteasome and RNR inhibitors in yeast and GBM cell models. We have shown that impaired proteasome function results in increased levels of RNR subunits and increased enzyme activity in yeast. Co-administration of the proteasome inhibitor bortezomib and the RNR inhibitor hydroxyurea was found to significantly reduce the growth rate of S. cerevisiae yeast. Accordingly, the combination of bortezomib and another RNR inhibitor gemcitabine reduced the survival of DBTRG-05MG compared to the HEK293 cell line. Thus, yeast can be used as a simple model to evaluate the efficacy of combinations of proteasome and RNR inhibitors.


Assuntos
Glioblastoma , Saccharomyces cerevisiae , Humanos , Complexo de Endopeptidases do Proteassoma , Glioblastoma/tratamento farmacológico , Bortezomib/farmacologia , Células HEK293
2.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565963

RESUMO

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Apoptose
3.
Oncotarget ; 15: 159-174, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441437

RESUMO

GZ17-6.02, a synthetically manufactured compound containing isovanillin, harmine and curcumin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with a recommended phase 2 dose (RP2D) of 375 mg PO BID. GZ17-6.02 was more efficacious as a single agent at killing multiple myeloma cells than had previously been observed in solid tumor cell types. GZ17-6.02 interacted with proteasome inhibitors in a greater than additive fashion to kill myeloma cells and alone it killed inhibitor-resistant cells to a similar extent. The drug combination of GZ17-6.02 and bortezomib activated ATM, the AMPK and PERK and inactivated ULK1, mTORC1, eIF2α, NFκB and the Hippo pathway. The combination increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM, and reduced the levels of BCL-XL and MCL1. GZ17-6.02 interacted with bortezomib to enhance autophagosome formation and autophagic flux, and knock down of ATM, AMPKα, ULK1, Beclin1 or ATG5 significantly reduced both autophagy and tumor cell killing. Knock down of BAK and BIM significantly reduced tumor cell killing. The expression of HDACs1/2/3 was significantly reduced beyond that previously observed in solid tumor cells and required autophagy. This was associated with increased acetylation and methylation of histone H3. Combined knock down of HDACs1/2/3 caused activation of ATM and the AMPK and caused inactivation of ULK1, mTORC1, NFκB and the Hippo pathway. HDAC knock down also enhanced ATG13 phosphorylation, increased BAK levels and reduced those of BCL-XL. Collectively, our present studies support performing additional in vivo studies with multiple myeloma cells.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Bortezomib/farmacologia , Proteínas Quinases Ativadas por AMP , Proteína Beclina-1 , Antineoplásicos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina
4.
Genes (Basel) ; 15(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540446

RESUMO

BACKGROUND: Multiple myeloma (MM) is a malignancy derived from plasma cells. Bortezomib affects the concentration of reduced glutathione (GSH) and the activity of glutathione enzymes. The aim of our study was to analyze deletion (null/present) variants of GSTT1 and GSTM1 genes and their association with the levels of glutathione and its enzymes in bortezomib-treated cell cultures derived from MM patients. MATERIALS AND METHODS: This study included 180 individuals (80 MM patients and 100 healthy blood donors) who were genotyped via multiplex PCR (for the GSTT1/GSTM1 genes). Under in vitro conditions, MM bone marrow cells were treated with bortezomib (1-4 nM) to determine apoptosis (via fluorescence microscopy), GSH concentration, and activity of glutathione enzymes (via ELISA). RESULTS: Bortezomib increased the number of apoptotic cells and decreased the activity of S-glutathione transferase (GST) and glutathione peroxidase (GPx). We found significant differences in GST activity between 1 nM (GSTT1-null vs. GSTT1-present), 2 nM (GSTT1-null vs. GSTT1-present), and 4 nM (GSTM1-null vs. GSTM1-present) bortezomib: 0.07 vs. 0.12, p = 0.02; 0.06 vs. 0.10, p = 0.02; and 0.03 vs. 0.08, p = 0.01, respectively. CONCLUSIONS: Bortezomib affects the activities of GST and GPx. GST activity was associated with GSTT1 and GSTM1 variants but only at some bortezomib doses.


Assuntos
Mieloma Múltiplo , Polimorfismo Genético , Humanos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Glutationa Peroxidase/genética , Glutationa Transferase/genética , Glutationa , Apoptose
5.
Math Biosci Eng ; 21(3): 3876-3909, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38549312

RESUMO

Bortezomib and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts protein degradation in cells, leading to the accumulation of unfolded proteins that induce apoptosis. On the other hand, virotherapy uses genetically modified oncolytic viruses (OVs) to infect cancer cells, trigger cell lysis, and activate anti-tumor response. Despite progress in cancer treatment, identifying administration protocols for therapeutic agents remains a significant concern, aiming to strike a balance between efficacy, minimizing toxicity, and administrative costs. In this work, optimal control theory was employed to design a cost-effective and efficient co-administration protocols for bortezomib and OVs that could significantly diminish the population of cancer cells via the cell death program with the NF$ \kappa $B-BAX-RIP1 signaling network. Both linear and quadratic control strategies were explored to obtain practical treatment approaches by adapting necroptosis protocols to efficient cell death programs. Our findings demonstrated that a combination therapy commencing with the administration of OVs followed by bortezomib infusions yields an effective tumor-killing outcome. These results could provide valuable guidance for the development of clinical administration protocols in cancer treatment.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Morte Celular
6.
Leuk Res ; 139: 107469, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479337

RESUMO

BACKGROUND: The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS: In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS: Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS: Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Receptores de Quimiocinas , Endorribonucleases , Proteínas Serina-Treonina Quinases , Receptores CCR1/genética , Receptores CCR1/metabolismo
7.
Front Biosci (Landmark Ed) ; 29(3): 106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538281

RESUMO

BACKGROUND: Bortezomib (BTZ) is a powerful proteasome inhibitor that has been approved for the treatment of haematologic malignancies. Its effectiveness has been assessed against different types of solid tumours. BTZ is ineffective in most solid tumours because of drug resistance, including cholangiocarcinoma, which is associated with a proteasome bounce-back effect. However, the mechanism through which proteasome inhibitors induce the proteasome bounce-back effect remains largely unknown. METHODS: Cholangiocarcinoma cells were treated with BTZ, cisplatin, or a combination of both. The mRNA levels of Nfe2l1 and proteasome subunit genes (PSMA1, PSMB7, PSMD1, PSMD11, PSMD14, and PSME4) were determined using quantitative real time polymerase chain reaction (qPCR). The protein levels of nuclear factor-erythroid 2-related factor 1 (Nfe2l1) and proteasome enzyme activity were evaluated using western blotting and proteasome activity assays, respectively. Transcriptome sequencing was performed to screen for potential transcription factors that regulate Nfe2l1 expression. The effect of zinc finger E-box-binding homeobox 1 (ZEB1) on the expression of Nfe2l1 and proteasome subunit genes, as well as proteasome enzyme activity, was evaluated after the knockdown of ZEB1 expression with siRNA before treatment with BTZ. The transcriptional activity of ZEB1 on the Nfe2l1 promoter was detected using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Cell viability was measured using the cell counting kit-8 (CCK-8) assay and cell apoptosis was assessed using western blotting and flow cytometry. RESULTS: Cisplatin treatment of BTZ-treated human cholangiocarcinoma cell line (RBE) suppressed proteasome subunit gene expression (proteasome bounce-back) and proteasomal enzyme activity. This effect was achieved by reducing the levels of Nfe2l1 mRNA and protein. Our study utilised transcriptome sequencing to identify ZEB1 as an upstream transcription factor of Nfe2l1, which was confirmed using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Notably, ZEB1 knockdown using siRNA (si-ZEB1) hindered the expression of proteasome subunit genes under both basal and BTZ-induced conditions, leading to the inhibition of proteasomal enzyme activity. Furthermore, the combination treatment with BTZ, cisplatin, and si-ZEB1 significantly reduced the viability of RBE cells. CONCLUSIONS: Our study uncovered a novel mechanism through which cisplatin disrupts the BTZ-induced proteasome bounce-back effect by suppressing the ZEB1/Nfe2l1 axis in cholangiocarcinoma. This finding provides a theoretical basis for developing proteasome inhibitor-based strategies for the clinical treatment of cholangiocarcinoma and other tumours.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Cisplatino/farmacologia , Bortezomib/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , RNA Interferente Pequeno , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Luciferases , RNA Mensageiro , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Transativadores
9.
Leuk Res ; 138: 107455, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38368721

RESUMO

OBJECTIVE: To explore the involvement of TFEB-mediated autophagy-lysosomal mechanisms in multiple myeloma (MM) during bortezomib treatment. METHODS: MM cells were exposed to bortezomib or subjected to TFEB knockdown. CCK assay was used to assess the cell proliferation. Western blotting and fluorescent staining were conducted to examine autophagy and lysosomes. The TFEB expression pattern was analyzed, and whole transcriptome sequencing was carried out. Additionally, TFEB target genes were predicted using the GTRD(http://gtrd.biouml.org/) website, and pathway analysis was performed. RESULTS: Bortezomib demonstrated a dose-dependent and time dependent inhibition of cell proliferation. In MM cells treated with bortezomib, LC3B, Beclin-1, TFEB, and Lamp1 exhibited upregulation in a time- and concentration-dependent manner. LysoTracker dye labeling showed an increase in lysosomes in the bortezomib-treated group. Moreover, bortezomib elevated the expression of lysosome-associated factor Lamp1. Bortezomib promoted the nuclear translocation of TFEB, leading to decreased cytoplasmic TFEB and increased nuclear TFEB. TFEB gene silencing reversed bortezomib's inhibitory effect on MM cell lines, significantly reducing autophagosome expression and lysosome numbers. Furthermore, bioinformatic analysis identified the MAPK pathway as a potential downstream target of TFEB. CONCLUSION: Bortezomib effectively inhibits MM cell proliferation and induces autophagy, partly through TFEB-mediated mechanisms, with potential involvement of the MAPK pathway.


Assuntos
Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Autofagia , Autofagossomos/metabolismo , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
10.
Nanoscale ; 16(10): 5280-5293, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38369899

RESUMO

Macrophage-driven inflammation is the central player in a range of pathological conditions, comprising autoimmune disorders, various cancers, as well as chronic inflammatory states like rheumatoid arthritis. Therapeutic strategies tailored to specifically target macrophage behavior have acquired substantial interest for their potential to alleviate chronic inflammation effectively. In this study, we introduce a pioneering therapeutic approach utilizing specialized CD44-targeted immunoliposomes carrying bortezomib to address inflammation at the cellular level and the significance of this strategy lies in its precision nature. Bortezomib's inhibition of the proteasome interferes with the finely-tuned mechanism that controls NFκB activation, ultimately leading to a downregulation of the inflammatory response. After performing computational docking demonstrating its strong binding affinity to the proteasome molecule, the resulting nano-construct displayed a hydrodynamic size of 144.26 ± 74.4 nm and a quasi-spherical morphology. Moreover, the nano-construct ensured a minimum shelf-life of 30 days, aiming for targeted delivery with practical longevity. Upon internalization of immunoliposomes, the interaction with CD44 receptors exhibited downstream signaling events. This included the activation of Jun amino-terminal kinases 1/2 (JNK1/2) and the extracellular-signal-regulated kinases (ERK) pathway. JNK1/2 activation may lead to the release of mitochondrial pro-apoptotic factors, triggering the intrinsic apoptotic pathway and activation of caspases, which was confirmed from the level of apoptotic gene and protein expression. The precise targeting and anti-inflammatory action of this therapy against macrophages hold promise for therapeutic interventions in a wide range of inflammatory conditions, offering a novel avenue for precision medicine in the battle against excessive inflammation.


Assuntos
Inflamação , Complexo de Endopeptidases do Proteassoma , Humanos , Bortezomib/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipossomos/metabolismo , Macrófagos/metabolismo , Receptores de Hialuronatos/metabolismo
11.
Sci Rep ; 14(1): 3768, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355966

RESUMO

Neuroblastoma (NB) is the most common pediatric tumor and is currently treated by several types of therapies including chemotherapies, such as bortezomib treatment. However, resistance to bortezomib is frequently observed by mechanisms that remain to be deciphered. Bortezomib treatment leads to caspase activation and aggresome formation. Using models of patients-derived NB cell lines with different levels of sensitivity to bortezomib, we show that the activated form of caspase 3 accumulates within aggresomes of NB resistant cells leading to an impairment of bortezomib-induced apoptosis and increased cell survival. Our findings unveil a new mechanism of resistance to chemotherapy based on an altered subcellular distribution of the executioner caspase 3. This mechanism could explain the resistance developed in NB patients treated with bortezomib, emphasizing the potential of drugs targeting aggresomes.


Assuntos
Antineoplásicos , Neuroblastoma , Criança , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Caspase 3/farmacologia , Linhagem Celular Tumoral , Apoptose , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
12.
Technol Cancer Res Treat ; 23: 15330338241232554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361483

RESUMO

BACKGROUND: Necroptosis is an inflammatory cell death mode, and its association with multiple myeloma (MM) remains unclear. METHODS: This prospective study first analyzed the association between necroptosis-related signature as well as prognosis and chemotherapy sensitivity in MM using the necroptosis score. Consensus clustering was used to identify necroptosis-related molecular clusters. Least absolute shrinkage and selection operator analysis and multivariate Cox regression analysis were performed to establish the prognostic model of necroptosis-related genes (NRGs). RESULTS: A high necroptosis score was associated with poor prognosis and abundant immune infiltration. Two molecular clusters (clusters A and B) significantly differed in terms of prognosis and tumor microenvironment. Cluster B had a worse prognosis and higher tumor marker pathway activity than cluster A. The risk score model based on four NRGs can accurately predict the prognosis of patients with MM, which was validated in two validation cohorts. Receiver operating characteristic curve analysis showed that the area under the curves of the risk score in predicting the 1-, 3-, and 5-year survival rates were 0.710, 0.758, and 0.834, respectively. Further, the activity of pathways related to proliferation and genetic regulation in the high-risk group significantly increased. The drug prediction results showed that the low-risk score group was more sensitive to bortezomib, cytarabine, and doxorubicin than the high-risk score group. Meanwhile, the high-risk score group was more sensitive to lenalidomide and vinblastine than the low-risk score group. Finally, the upregulation of model genes CHMP1A, FAS, JAK3, and HSP90AA1 in clinical samples collected from patients with MM was validated via real-time polymerase chain reaction. CONCLUSION: A systematic analysis of NRGs can help identify potential necroptosis-related mechanisms and provide novel biomarkers for MM prognosis prediction, tumor microenvironment evaluation, and personalized treatment planning.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Necroptose , Estudos Prospectivos , Prognóstico , Bortezomib/farmacologia , Microambiente Tumoral/genética
13.
PLoS One ; 19(2): e0289904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412186

RESUMO

Proteasome inhibitors such as Bortezomib represent an established type of targeted treatment for several types of hematological malignancies, including multiple myeloma, Waldenstrom's macroglobulinemia, and mantle cell lymphoma, based on the cancer cell's susceptibility to impairment of the proteasome-ubiquitin system. However, a major problem limiting their efficacy is the emergence of resistance. Their application to solid tumors is currently being studied, while simultaneously, a wide spectrum of hematological cancers, such as Myelodysplastic Syndromes show minimal or no response to Bortezomib treatment. In this study, we utilize the prostate cancer cell line DU-145 to establish a model of Bortezomib resistance, studying the underlying mechanisms. Evaluating the resulting resistant cell line, we observed restoration of proteasome chymotrypsin-like activity, regardless of drug presence, an induction of pro-survival pathways, and the substitution of the Ubiquitin-Proteasome System role in proteostasis by induction of autophagy. Finally, an estimation of the oxidative condition of the cells indicated that the resistant clones reduce the generation of reactive oxygen species induced by Bortezomib to levels even lower than those induced in non-resistant cells. Our findings highlight the role of autophagy and oxidative stress regulation in Bortezomib resistance and elucidate key proteins of signaling pathways as potential pharmaceutical targets, which could increase the efficiency of proteasome-targeting therapies, thus expanding the group of molecular targets for neoplastic disorders.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Mieloma Múltiplo , Neoplasias da Próstata , Humanos , Adulto , Masculino , Bortezomib/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Neoplasias Hematológicas/patologia , Neoplasias da Próstata/tratamento farmacológico , Estresse Oxidativo , Autofagia , Ubiquitinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 138-145, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387912

RESUMO

OBJECTIVE: To investigate the mechanism and clinical value of nicotinamide phosphoribosyltransferase (NAMPT) in multiple myeloma (MM). METHODS: RT-qPCR and Western blot were used to detect the expression of NAMPT in MM cells and normal bone marrow mononuclear cells. The biological function of NAMPT was analyzed by cell proliferation and apoptosis assay, small interfering RNA silencing, overexpression assay and chromatin immunoprecipitation assay. RESULTS: The mRNA and protein expression levels of NAMPT in MM cell lines (MM1R, MM1S, U266 and RPMI-8226) were significantly higher than those in normal bone marrow mononuclear cells (P < 0.001), and were most obvious in U266 cells. Compared with Si-NC group, the proliferation of U266 cells in Si-NAMPT group was significantly inhibited at 24, 48 and 72 h after transfection (P =0.006, P < 0.001, P =0.001), and the apoptosis rate of U266 cells was significantly increased at 48 h after transfection (P < 0.001). Compared with Flag-NC group, U266 cell proliferation in Flag-NAMPT group was significantly increased (P =0.003, P =0.002, P < 0.001), while the apoptosis rate decreased significantly at 48 h after transfection. The expression of NAMPT in U266 cells was regulated by XBP1 at transcriptional level. The proliferation rate of U266 cells with XBP1 or NAMPT stable knockout or MKC3946 pretreated with bortezomib was significantly decreased, the levels of BCL-2 mRNA and protein were also significantly decreased, while the levels of BAX mRNA and protein were significantly increased, moreover, the cleavage degree of caspase-3 significantly decreased, while caspase-3/7 activity increased dramatically (P < 0.05). CONCLUSIONS: The high expression of NAMPT in MM cell line can promote MM cell proliferation and inhibit apoptosis. NAMPT is regulated by IRE1α-XBP1 signaling pathway in U266 cells. Stable knockdown of NAMPT or blocking of IRE1α-XBP1 pathway can significantly increase the sensitivity of U266 cells to bortezomib.


Assuntos
Mieloma Múltiplo , Humanos , Apoptose , Bortezomib/farmacologia , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Relevância Clínica , Endorribonucleases , Mieloma Múltiplo/genética , Nicotinamida Fosforribosiltransferase , Proteínas Serina-Treonina Quinases , RNA Mensageiro/genética
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 171-175, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387917

RESUMO

OBJECTIVE: To study the incidence and risk factors of herpes zoster in patients with multiple myeloma and to evaluate the preventive effect of antiviral therapy. METHODS: The clinical features of multiple myeloma patients with herpes zoster were retrospectively analyzed, the risk factors of herpes zoster and the effect of antiviral prophylaxis were analyzed. RESULTS: Among 180 patients with multiple myeloma, 23 cases developed herpes zoster (12.8%). The incidence of herpes zoster was 19.1% in patients with renal dysfunction and 23.5% after autologous hematopoietic stem cell transplantation (ASCT). The incidence of herpes zoster was higher in patients receiving bortezomib-containing regimens (21/137, 15.3%) than that in those without bortezomib (2/43, 4.7%), but there was no statistical difference (P =0.067). Antiviral prophylaxis was associated with fewer zoster infections, 8/111(7.2%) developed herpes zoster in patients who received antiviral prophylaxis, and 15/69 (21.7%) in those receiving no prophylaxis(P =0.005). 65.2% of patients with herpes zoster did not receive antiviral prophylaxis. Multivariate analysis showed that bortezomib treatment, AHSCT and renal dysfunction were independent risk factors for multiple myeloma with herpes zoster, while antiviral prophylaxis was independently associated with reducing the risk of herpes zoster. Herpes zoster had no effect on OS in patients with multiple myeloma. CONCLUSION: The risk of herpes zoster in multiple myeloma patients was increased. Antiviral prophylaxis can reduce the risk of herpes zoster in patients on bortezomib-based therapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Herpes Zoster , Nefropatias , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Bortezomib/uso terapêutico , Bortezomib/farmacologia , Estudos Retrospectivos , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3 , Fatores de Risco , Transplante Autólogo , Antivirais/uso terapêutico , Antivirais/farmacologia
16.
Vet Comp Oncol ; 22(1): 96-105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237918

RESUMO

The standard treatment for canine lymphoma is the CHOP chemotherapy regimen. Proteasome inhibitors have been employed with CHOP for the treatment of human haematological malignancies but remain to be fully explored in canine lymphoma. We identified an association between poor response to CHOP chemotherapy and high mRNA expression levels of proteasomal subunits in a cohort of 15 canine lymphoma patients, and sought to determine the effect of proteasome inhibitors on the viability of a canine B-cell lymphoma cell line (CLBL-1). The aim of this study was to investigate whether proteasome inhibitors sensitize these cells to the CHOP agents doxorubicin, vincristine and cyclophosphamide (as 4-hydroxycyclophosphamide/4-HC). CLBL-1 cells were sensitive to proteasome inhibition by bortezomib and ixazomib. The IC50 of bortezomib was 15.1 nM and of ixazomib was 59.14 nM. Proteasome inhibitors plus doxorubicin had a synergistic effect on CLBL-1 viability; proteosome inhibitors plus vincristine showed different effects depending on the combination ratio, and there was an antagonistic effect with 4-HC. These results may have clinical utility, as proteasome inhibition could potentially be used with a synergizing CHOP compound to improve responsiveness to chemotherapy for canine lymphoma patients.


Assuntos
Compostos de Boro , Doenças do Cão , Glicina/análogos & derivados , Linfoma , Humanos , Animais , Cães , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Vincristina/farmacologia , Vincristina/uso terapêutico , Complexo de Endopeptidases do Proteassoma , Doenças do Cão/tratamento farmacológico , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Prednisona/farmacologia , Prednisona/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma/tratamento farmacológico , Linfoma/veterinária
17.
Environ Toxicol ; 39(4): 2452-2465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251764

RESUMO

Multiple myeloma (MM) is a common hematological malignancy, and patients with MM are recommended to take immunomodulatory drugs such as lenalidomide along with proteasome inhibitors such as bortezomib to extend survival. However, drug resistance influences the efficacy of treatment for MM. In our study, we found that metformin and chidamide both suppressed MM cell growth in a concentration- and time-dependent way (p < .001). Moreover, combined therapy with metformin and chidamide exhibited enhanced inhibition of the growth of MM cells compared with monotherapy (p < .05). Additionally, the triple-drug combination of metformin and chidamide with lenalidomide or bortezomib was used to stimulate the MM cells, and the results revealed that metformin and chidamide treatment sensitized MM cells to lenalidomide and bortezomib. As a result, the apoptosis (p < .001) together with cell cycle arrest at G0/G1 phase (p < .05) was stimulated by lenalidomide and bortezomib, and showed significant elevation in the triple-drug combination group compared with the lenalidomide or bortezomib treatment alone group (p < .05). Furthermore, the impacts of different drugs on glycolysis in MM cells were examined. We found that metformin and chidamide combined treatment significantly promoted glucose uptake and reduced energy production in MM cells treated with lenalidomide and bortezomib (p < .001), suggesting that metformin and chidamide affected glycolysis in MM cells and enhanced the sensitivity of lenalidomide and bortezomib in MM by regulating glucose metabolism. In conclusion, metformin and chidamide synergistically hindered MM cell growth and sensitized cells to lenalidomide/bortezomib. The findings of this study might provide novel clues to improve MM therapy.


Assuntos
Aminopiridinas , Benzamidas , Metformina , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Metformina/farmacologia , Dexametasona/uso terapêutico , Combinação de Medicamentos
18.
Mol Biol Rep ; 51(1): 170, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252234

RESUMO

BACKGROUND: Proteasome inhibition is a promising strategy for cancer therapy. Bortezomib, which primarily targets the chymotrypsin-like activity of PSMB5, has demonstrated efficacy in various tumors. However, there is variable sensitivity to bortezomib, which could be attributed, in part, to variations in the expression of proteasome subunits. METHODS AND RESULTS: In this study, we investigated whether miR-383 affects the expression of proteasome subunits in osteosarcoma (OS) cells, and if so, whether OS cells display differential sensitivity to bortezomib concerning miR-383 expression. We detected a decreased miR-383 expression in OS cells and tissues. Then we found a negative correlation between the cytotoxicity of bortezomib and the expression level of the proteasome 20S core particle subunit ß5 (PSMB5). Intriguingly, we identified PSMB5 as a direct target of miR-383. Increased expression of miR-383 resulted in decreased PSMB5 expression and increased sensitivity to bortezomib in OS cells. CONCLUSIONS: In summary, our findings present the initial comprehensive analysis of the function of miR-383 in OS. The outcomes indicate that miR-383 may augment the anticancer effect of bortezomib through PSMB5 repression, offering a novel therapeutic approach in OS and a fresh pathway for proteasome regulation.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , Bortezomib/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , MicroRNAs/genética
19.
Int J Hematol ; 119(3): 303-315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245883

RESUMO

Resistance to proteasome inhibitors (PIs) has emerged as an important clinical issue. We investigated the mechanisms underlying multiple myeloma (MM) cell resistance to PIs. To mimic their pharmacokinetic/pharmacodynamic (PK/PD) profiles, MM cells were treated with bortezomib and carfilzomib for 1 h at concentrations up to 400 and 1,000 nM, respectively. Susceptibility to these PIs markedly varied among MM cell lines. Pulsatile treatments with PIs suppressed translation, as demonstrated by incorporation of puromycin at 24 h in PI-susceptible MM.1S cells, but not PI-resistant KMS-11 cells. Inhibition of ß5 subunit activity decreased at 24 h in KMS-11 cells, even with the irreversible PI carfilzomib, but not under suppression of protein synthesis with cycloheximide. Furthermore, the proteasome-degradable pro-survival factors PIM2 and NRF2 acutely accumulated in MM cells subjected to pulsatile PI treatments. Accumulated NRF2 was trans-localized into the nucleus to induce the expression of its target gene, HMOX1, in MM cells. PIM and Akt inhibition restored the anti-MM effects of PIs, even against PI-resistant KMS-11 cells. Collectively, these results suggest that increased synthesis of ß5 proteasome subunit and acute accumulation of PIM2 and NRF2 reduce the anti-MM effects of PIs.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Mieloma Múltiplo/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas , Proteínas Serina-Treonina Quinases
20.
Bone Marrow Transplant ; 59(4): 526-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38297040

RESUMO

Bortezomib (Vel)- Melphalan 200 mg/m2 (Mel200) (Vel-Mel) has been utilised to intensify conditioning in autologous hematopoietic stem cell transplantation (AHCT) for multiple myeloma (MM). This EBMT registry-based study compared Vel-Mel with Mel200 during upfront AHCT. Between 2010 and 2017, MM patients who received Vel-Mel (n = 292) conditioning were compared with 4,096 Mel200 patients in the same 58 centres. Pre-AHCT, compared to Mel200 patients, Vel-Mel patients had similar International Staging System (ISS) scores and cytogenetic risk profiles; a similar proportion had received bortezomib-based induction (85% and 87.3%, respectively) though they were younger with a better performance status. Vel-Mel patients were more likely to achieve CR post-induction (40.6% vs 20.3%, p < 0.001) and by day 100 of AHCT (CR/VGPR: 70.2 % vs. 57.2%, p < 0.001). There was no difference in 3-year PFS (49% vs 46%, p = 0.06) or early post-AHCT mortality. In multivariable analysis, Vel-Mel associated with inferior PFS (HR: 1.69 (1.27-2.25, p < 0.001) and OS (HR:1.46 (1.14-1.86,p = 0.002), similar to negative effects on PFS of advanced ISS (HR:1.56 (1.33-1.83, p < 0.001), high-risk cytogenetics (HR:1.43(1.18-1.74, p < 0.001) and poor post-induction response(<=PR)(HR: 1.43(1.25-1.62, p < 0.001) Overall, despite superior pre- and post-AHCT responses, there was no improvement in PFS or OS following Vel-Mel. This data supports the findings of the smaller prospective IFM study.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/diagnóstico , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Melfalan/farmacologia , Melfalan/uso terapêutico , Estudos Prospectivos , Transplante Autólogo , Protocolos de Quimioterapia Combinada Antineoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...